


1  

ATTACHMENT 1 

 

DIGITAL BUILDING CODE FOR DIGITAL ENGINEERING AND MANAGEMENT. 

 

The key to employing Digital Engineering and Management is achieving a measure of 
authoritative virtualization that automates, replaces or truncates real-world activities. This is how 
you realize game-changing agility that Digital Acquisition and Sustainment can deliver for your program 
and our warfighters. In addition, it is also how you will realize the return on investment (ROI) for your 
digital transformation efforts.  

The following guidance is provided to assist PEOs/PMs to determine and implement Digital 
Engineering: 

1. Develop digital models of systems 

1.1. Build and maintain appropriate fidelity model-based representations of systems in 
commercial-off-the-shelf (COTS) architecture tools using Systems Modeling 
Language (SysML), or equivalent modeling language. This enables the effective 
exchange of information including requirements, system functions, and process 
flows between all organizations involved in the development process and through 
sustainment. 

1.2. Determine guidelines/use cases that will scope what needs to be modeled and to what 
fidelity given acquisition and sustainment strategies.  Reference an established style 
guide to build and maintain the models. Consult the Air Force Digital Guide 
(https://usaf.dps.mil/teams/afmcde) for the latest guidance on the most suitable style 
guide. 

1.3. Encapsulate all necessary elements in models with appropriate tags to facilitate 
tracing between requirements, technical data, and certifications. Clearly link 
requirements to planned verification activities (e.g., technical reviews, certifications, 
testing plans, and procedures). 

1.4. Construct models to enable the following to be traced from the requirements: 
analysis of requirements, system architecture design, allocations, interfaces, 
certifications, and functional thread analysis. 

1.5. Include the capability to predict operational performance and quantify uncertainty in 
models of a system or subsystem in a simulated, representative environment. 

2. Develop a digital twin and digital thread 

2.1. Establish and manage a digital thread that links models and digital artifacts and 
creates an authoritative source of truth. A program or a platform may be an integrator 
of multiple digital twins comprising the system. Update digital artifacts throughout 
the system lifecycle to maintain a digital twin of the physical system. 

2.2. Construct digital threads using a data architecture that defines the data, schemas, 
integration, transformations, storage, and workflows required to design and sustain 



2  

the system. The data architecture should also define naming conventions, data 
types/formats, integrity, archival/retention, required security, flows, pipelines, 
linkage with associated metadata, and transformations. 

3. Implement an integrated digital environment 

3.1. Use an integrated digital environment (IDE). An IDE is a compilation of data, 
models, and tools for collaboration, analysis, and visualization across functional 
domains. An IDE includes the methodology and specification for data, models, and 
tools arrangement with processes and procedures to exploit informational results. 

3.2. An ideal IDE would include the following: 

3.2.1. Development Platform: CloudONE, PlatformONE, and DataONE. 

3.2.2. Architectural Modeling: COTS software such as CAMEO Systems 
Modeler, Sparx Enterprise Architect, or IBM Rhapsody. 

3.2.3. Product Lifecycle Management (PLM): Siemens Teamcenter or approved 
alternative. For additional information: AF-PLM-CSO@us.af.mil. 

3.2.4. System Performance Modeling and Operational Analysis: AFSIM or 
other M&S environments. 

3.2.5. Requirements Management: COTS software such as DOORS or CAMEO 
Systems Modeler. 

3.2.6. Data analyses and visualization: Tableau, Power BI, MATLAB, Python 
or other visualization tools 

3.3. Determine and implement an IDE strategy that specifies preferred digital tools, 
considers tools accessibility and security considerations, and outlines the impact this 
strategy will have on internal and industry collaborations (e.g., tool integration, data 
interoperability). A cost benefit analysis should assess whether to acquire and deploy 
tools, use DoD High Performance Computing Modernization Program (HPCMP) 
resources, or negotiate the use of tools by industry performers. Tips for initial 
implementation of an IDE can be found at the Air Force Digital Guide: 
https://usaf.dps.mil/teams/afmcde. 

4. Employ a tailored digital strategy for contracting with industry 

4.1. Because digital transformation is in its early stages, contracting guidance is rapidly 
evolving. For the latest recommendations and templates, please see the Air Force 
Digital Guide contracting section: 
https://usaf.dps.mil/teams/afmcde/SitePages/Model-based-Contract-Language.aspx. 
Here practitioners can access information on “Key Digital Features” that should be 
considered during contracting actions. In addition, programs can access example 
contract language from other acquisitions. Additional contracting Tactics, 
Techniques, and Procedures (TTPs) on this and related topics will be added over 
time and available online through Air Force Contracting Central. The Digital Guide 
also includes guidance on IP and technical data for contract language. 



3  

5. Ensure organizational readiness for Digital Engineering 

5.1. To ensure a central point of contact for tools and infrastructure needs, enable 
consistent implementation and coordination, and ensure sharing of lessons learned 
and collaboration, programs may designate the Chief Engineer, or an alternate, as the 
DE focal point within their organization. The DE focal point is responsible for 
specifying general digital engineering training, courses, and certifications for the 
program to ensuring an organizational minimum working knowledge of digital 
engineering, regardless of function. Examples of available workforce training for 
digital tools and related infrastructure, include: 

5.1.1. MBSE modeling language: SysML based tools (or their equivalent). Also, 
consider other related training, such as UPDM, UAFP, UML, BPMN, and 
XML. 

5.1.2. Cloud Environment: CloudONE and PlatformONE services. Training 
resources are available at https://software.af.mil/training. 

5.1.3. DevSecOps processes: Training resources are available at 
https://software.af.mil/training. 

5.1.4. Digital Engineering / Advanced Engineering Analysis: Applicable 
modeling techniques for applications such as structures, design/analysis 
(e.g., CAD, FEA, CFD), embedded software, electronics, and other 
disciplines as appropriate. 

5.2. Select training and organizational readiness information can also be found in the Air 
Force Digital Guide at https://usaf.dps.mil/teams/afmcde. 

6. Implement Digital Acquisition 

6.1. Digital Engineering will fundamentally transform how we conduct systems 
engineering and acquisition processes. For example, all acquisition plans, program 
and technical reviews, and testing and certification processes will shift from a 
fundamentally document-based construct to one based on models and digital 
artifacts. Key steps toward this transformation for programs include: 

6.1.1. Link model-based engineering activities and digital artifacts to acquisition 
planning in support of the Capability Development Document (CDD), 
Acquisition Strategy, Systems Engineering Plan (SEP), Life Cycle 
Sustainment Plan (LCSP), Test and Evaluation Master Plan (TEMP), and 
other acquisition artifacts. As program modelling implementation 
matures, programs should seek automated and model- based updates to 
these artifacts to eliminate stagnant acquisition information. Eventually, 
programs should strive to replace document-based acquisition 
information with sufficiently mature and authoritative models where 
appropriate. Any program not pursuing digital engineering principles 
should document their rationale in the acquisition strategy for Milestone 
Decision Authority (MDA) approval or redirection. 



4  

6.1.2. Leverage models to support acquisition reviews, including Milestone 
Reviews, In-Progress Reviews, and other acquisition reviews and 
program oversight activities. 

6.1.3. Conduct Systems Engineering Technical Reviews (SETRs) (to include 
System Requirements Reviews, System Functional Reviews, Preliminary 
Design Reviews, Critical Design Reviews, and configuration audits) 
using models and digital artifacts in lieu of document-based artifacts to 
the maximum extent practicable. At technical reviews, when possible, 
programs should use information from the digital authoritative source of 
truth to assess risks, issues, opportunities, and mitigation plans in order to 
understand cost, schedule, and performance implications. 

6.1.4. Trace and validate requirements based on models and digital artifacts to 
the maximum extent practicable. 

6.1.5. Programs and the Developmental Test and Operational Test communities 
should engage early to determine strategy and planning for employing 
model-based test and evaluation activities. Verification and validation of 
models is critical to achieving authoritative virtualizations of systems. 

6.1.6. Leverage models and digital artifacts for certification events (e.g., 
airworthiness, Authority to Operate (ATO)s, Information Assurance 
Certificates, safety, nuclear surety). Engage with certification offices to 
automate as much of these certification processes as practicable. 

6.1.7. Leverage models and digital artifacts for planning and tracking reliability, 
maintainability, availability, sustainability, and other program technical 
performance measures. 

6.1.8. Craft requests for proposals and resulting contracts to contain enforceable 
language that implement digital acquisition strategies and ensures 
deliverables are provided in the appropriate model-based and open 
formats. 

6.2. Additional information on many of the above considerations can be found in the 
DAF Digital Guide at https://usaf.dps.mil/teams/afmcde. 

7. Track Digital Maturity 

7.1. Track progress using the DAF Digital Maturity Assessment to baseline, prioritize, 
and manage execution of program or organizational digital initiatives. These metrics 
can be used at the start of a program’s journey to inform program or organizational 
digital implementation strategies, by PEOs to make comparisons and pool 
investments across portfolios, and to track progress toward successful 
implementation. The assessment can be found in the Air Force Digital Guide at 
https://usaf.dps.mil/teams/afmcde. 

 



1  

ATTACHMENT 2 

 

DIGITAL BUILDING CODE FOR AGILE SOFTWARE 

 

Over the past two years, we have seen software development transformation take root across the 
Air Force and Space Force in programs ranging from the F-16 to the Ground Based Strategic Deterrent 
(GBSD) to the Advanced Battle Management System (ABMS) to the T-38A. This transformation was 
propelled by adoption of the DevSecOps approach, agile software development, and open system 
architectures based on containerized microservices (orchestrated by Kubernetes and secured with Zero 
Trust). It will continue to expand through the use of common software development tech stacks that are 
converging around the CloudONE/PlatformONE environment. The payoffs have been game-changing for 
pathfinding programs. In 2020, the U-2 program made DoD history by becoming the first platform to 
push a software update to a jet while in flight (made possible via Kubernetes-deployed software 
containers). Just weeks later it became the first platform to put an artificial intelligence (AI) “operator” in 
control of a mission system with the deployment of the “ARTUµ” application. These transformational 
leaps forward attest to just how powerful this approach can be for existing programs as well as new ones. 

It is now time to take this Agile Software transformation from experimental start-up phase to a 
coordinated, standards-based scale-up across the Department. System and component interoperability, 
code reusability, security assurance and continuous authority-to-operate (cATO), and other efficiencies – 
not to mention the Department-wide enablement of AI and machine learning (ML) – can only be fully 
realized if the Department converges around common development standards, many of which are outlined 
below. 

The following standards employ open system architectures, ensuring the Department is postured 
to adapt as new technologies, methods, or needs arise. (For clarification, a modular open systems 
approach, or MOSA, is the process programs should leverage to achieve an open systems architecture 
[OSA]). Convergence on development standards does not mean innovation stops; rather, convergence 
around these development standards is what will unleash functional innovation at scale, and allow 
software development teams to focus on rapid development and deployment of new capabilities 
warfighters count on. 

The following guidance is provided to assist PEOs/PMs to implement Agile and DevSecOps software 
development: 

1. Implement DevSecOps software development methodology and reference design 

1.1. Adopt the use of Agile DevSecOps methodology as guided by the PEO C3BM 
(Command, Control, Communication and Battle Management) Office for all non-
commercial software development, including development work performed by our 
Defense Industrial Base (DIB) partners. 

1.2. Move away from Waterfall-based development to Agile. Many programs are 
adopting Agile for their software development but leverage waterfall-like processes 
for their program management. This brings all the impediments of waterfall while 
not fully benefiting from the return on investment of Agile. Programs should adopt 
end-to-end Agile principles to the maximum extent practicable. 



2  

1.3. Implement the DoD Enterprise DevSecOps Reference Design: Cloud Native 
Computing Foundation (CNCF) Kubernetes along with or including industry 
partners. 

1.3.1. Requirements in this reference document are continuously updated and 
precisely define the needs for DoD-wide reciprocity including Kubernetes, 
the Sidecar Container Security Stack (SCSS), and Open Container 
Initiative (OCI) compliant containers. This guidance is also updated to be 
consistent with the Defense Information Assurance (IA)/Security 
Accreditation Working Group (DSAWG) DevSecOps publications 
released by the DSAWG DevSecOps group, DoD CIO, and USD(A&S), 
including but not limited to Kubernetes Security Technical 
Implementation Guide (STIG), Container Security Requirements Guide 
(SRG), Container Hardening Guide, and cATO guidance documents. 

1.4. For embedded systems and systems that use a real-time (RT) operating system 
(RTOS), only use RT hardware, RTOS, and RT software when necessary. Leverage 
open architecture, Kubernetes, and non-RT hardware to the maximum extent 
practicable. Programs should expend their best effort to decouple RT from non-RT 
software, and implement and improve the PlatformONE Big Bang instance 
(Kubernetes, Service Mesh, and containers) in RT systems as necessary. 

2. Adopt the following common enterprise services and tooling standards 

2.1. Leverage PlatformONE and discontinue building new or competing enterprise-wide 
Continuous Integration/Continuous Delivery (CI/CD) pipelines and DevOps or 
DevSecOps platforms. PlatformONE is a pay-per-use model which can provide 
significant cost savings to DAF programs. 

2.1.1. Leverage either the ABMS – PlatformOnes’s Party Bus (multi-tenant) or a 
dedicated PlatformONE Big Bang instance (dedicated platform) without 
“forking” its code to ensure Repo One remains the source of truth for its 
code base. 

2.1.2. All software factories should leverage and contribute to the PlatformONE 
baseline on Repo One. PlatformONE is responsible for managing and 
enabling the environment, CI/CD pipeline, and Service Mesh layers. The 
software factories can focus on delivering mission capabilities by 
leveraging PlatformONE. 

2.1.3. Existing and new DevOps, DevSecOps, CI/CD pipelines, and other 
software factory types should register with the PEO C3BM Office as a 
DAF software factory. 

2.1.4. Programs leveraging these capabilities will need to use the Cloud Native 
Access Point, the DAF Zero Trust capability, to access Cloud providers 
and potentially on-premise environments when available. This will 
increase security, reduce the attack surface, and facilitate remote work, 
including for our DIB partners. 



3  

2.2. Software intensive programs and all ACAT I programs need to work with applicable 
test labs, nuclear surety authorities, airworthiness authorities, and other 
test/certification teams to deploy PlatformONE Kubernetes environments on premise 
to enable hardware in the loop testing using DevSecOps automation and flexibility. 

2.3. Leverage Repo One as the centralized source code repository for all code (e.g., 
Infrastructure-as-Code, Configuration-as-Code, container source code, Kubernetes 
distributions) to enable code reuse across the Department and DIB partners. 

2.3.1. Check Repo One to see if existing modular capability code already exists. 
Use Repo One capabilities to the maximum extent practicable. If an 
existing Repo One capability doesn’t fully address program requirements, 
every effort should be made to contribute missing capabilities back to 
Repo One. 

2.3.2. Avoid the “forking” of Repo One code. Forking is taking the source code 
from an open-source software program and developing an entirely new 
program. Instead of forking, contribute back to Repo One so the 
Department can leverage money already spent, consistent with Office of 
Management and Budget Memorandum M-16-21 (Federal Source Code 
Policy: Achieving Efficiency, Transparency, and Innovation through 
Reusable and Open-Source Software) to contribute to open-source projects 
and open sourcing of agency code. 

2.4. Use only approved sources for DoD containers. Currently, Iron Bank and Registry 
One are the only approved sources for DoD containers (with DoD-wide reciprocity). 

2.4.1. Additionally, programs are encouraged to contribute back to the Iron Bank 
container library to benefit the entire enterprise through reusability of 
code. The Iron Bank container onboarding guide is available at: 
https://repo1.dsop.io/dsop/dccscr/tree/master/contributor-onboarding 

3. Implement the following organization staffing, leadership, and training guidance 

3.1. Programs should designate a Chief Software Engineer (CSE) focal point within the 
organization to ensure a central point of contact for software and enable centralized 
coordination, sharing of lessons learned, and collaboration across programs. This 
focal point will also serve as a joint liaison between the Program Office and the PEO 
C3BM Office. 

3.2. Continuous Learning is critical to ensure our talent, whether civilian, military or 
contractor, can keep up with software innovation. In a partnership with the Air Force 
Chief Information Officer, programs should continuously leverage training content 
provided within the Air Force Digital University. 

3.3. The following training is recommended for Chief Engineers, Senior Material 
Leaders, Material Leaders, Program Managers, and Software Engineers: 

3.3.1. Domain Driven Design (how to cut monolithic applications into micro-
services, which is critical to cutting legacy systems into containers). 

3.3.2. Test-Driven Development. 



4  

3.3.3. Strangler Pattern or Side Car Pattern (how to deliver new capabilities 
while refactoring legacy and not the other way around). 

3.3.4. Microservice Architecture. 

3.3.5. Prevention of Lock-In (ensure teams understand how to not get locked-in 
to Cloud providers and products). 

3.3.6. Kubernetes (K8s). 

3.3.7. Containers. 

3.3.8. Kafka or any other queuing technology to capture logging and tracking 
information.  

3.4. Leverage training content provided within the Air Force Digital University 
(https://software.af.mil/training). 

4. Start tracking performance metrics for software factories and Agile teams 

4.1. To demonstrate return on investment and effectiveness, programs should collect 
DevOps Research and Assessments (DORA) metrics and other data points, to 
include Deployment Frequency (DF), Mean Lead Time for changes (MLT), Mean 
Time To Recover (MTTR), and Change Failure Rate (CFR). Collected DORA 
metrics should be reported to the PlatformONE DevSecOps DORA metrics team to 
the maximum extent practicable. 

A living repository of this standards information, documentation, and learning resources can be found at 
https://software.af.mil/dsop/documents/. There is also an Implementation Primer at this website, which 
outlines initial steps for applying this guidance along with answers to common questions. The PEO 
C3BM Office maintains this standards repository, and is available for any questions regarding this 
guidance at af.cso@us.af.mil. 

 

 



1  

ATTACHMENT 3 

 

DIGITAL BUILDING CODE FOR OPEN SYSTEMS ARCHITECTURE 

 

In defense acquisition, Open Architecture refers to adopting consensus-based standard interfaces, 
acquiring components and subsystems that comply with these interfaces, and integrating these 
components or subsystems using appropriate interface standards. Programs leverage a modular open 
systems approach (MOSA) to implement an open system architecture (OSA) for their systems. When 
implemented properly, an OSA creates a more agile, evolvable system and can bend cost, schedule, and 
performance curves back in our favor by driving increased competition, innovation, and adoption of 
mature technology from a broad range of sources – ultimately getting more innovative capability to the 
warfighter faster. 

It is not enough to say we need to adopt Open Systems Architectures or move more programs to a 
specific government-owned architecture. Effectively implementing OSA requires fundamental changes in 
our business and technical processes in order to provide industry with the information required, focus our 
own energy on the activities required to drive change, and become smarter developers and buyers. A key 
enabler for OSA is the adoption of an open business model, which requires increased transparency to 
leverage the contributions of multiple contractors to share risk, maximize asset reuse, and reduce total 
ownership costs. We also need to resource our Program Offices and train our acquisition and engineering 
professionals in OSA design so they can drive this new approach. Finally, we all must ensure acquisition 
leadership prioritizes OSA as much or more than near-term cost, schedule, and performance. 

It is important to understand what OSA means in the context of Digital Acquisition, and how it 
must be implemented. The following guidance is provided to assist PEOs/PMs in implementing OSA: 

1. Implement an Open Systems Architecture 

1.1. Programs shall be designed and developed, to the maximum extent practicable, with 
a modular open system approach (MOSA). To employ a MOSA, programs should 
ensure the proper level of logical, functional, and physical decomposition is 
performed and key modules are identified in order to leverage consensus-based 
standards at all appropriate interfaces and employ a system architecture that allows 
severable major system components and modular systems at the appropriate level to 
be incrementally added, removed, or replaced throughout the lifecycle. 

1.2. Programs should consider generating and maintaining SysML, or equivalent open 
and widely adopted modeling language, architecture models of the platform, 
systems, subsystems, and components.  Programs should ensure their modeling tools 
are chosen in such a way as to capture their major system interface information per 
the requirements laid out in the FY21 National Defense Authorization Act Section 
804.   

1.3. To facilitate the movement to OSAs, contracts should include relevant provisions to 
ensure the appropriate technical baseline documentation is made available digitally 
from the beginning, along with appropriate IP rights (or, in the alternative, specially 
negotiated licenses that will not adversely impact another platform’s ability to reuse 



2  

that data – including platforms not procured by an Air Force or Space Force 
acquisition organization). Taking a “Smart IP” approach is an essential aspect of 
employing OSA because it permits the government to use, release, and disclose 
technical baseline documentation to product support contractors, thereby yielding 
cost savings or avoidance, schedule reduction, opportunities for technical upgrades to 
address emerging threats, and increased interoperability—all of which accelerate 
program agility. Unless a program’s contracts implement OSA to an appropriate 
level of indenture of the weapon system’s architecture, and the program acquires the 
necessary technical baseline documentation accompanied by the appropriate IP 
rights, the program will fail to reap the benefits of OSA. It is also essential to design 
the program’s system architecture in a manner that is enticing to a broad ecosystem 
of developers, especially non-traditional commercial developers. Defining specific 
and appropriate proposal content and contract data requirements lists (CDRLs) will 
support development, delivery, and curation of OSA technical baseline models with 
appropriate government license rights for review at recurring program and design 
reviews; if architectural models are not yet feasible for your program, do the same 
for OSA technical baseline documentation. 

1.3.1. Ensure OSA models are linked to CDDs (or equivalent), acquisition 
strategies, System Engineering Plans (SEPs), and Lifecycle Sustainment 
Plans (LCSPs) to identify: (a) to what level of indenture of the Work 
Breakdown Structure (WBS) for subsystems and components the program 
intends to implement OSA, (b) what CDRL deliverables awardees will 
deliver, and (c) what IP rights those awardees will grant to those IP 
deliverables. Those deliverables should include: (a) technical data that 
describes the weapon system’s system and software architecture, (b) 
performance specifications describing the end-state functionality of all 
hardware components and computer software configuration items (CSCI) 
(or software units) comprising that weapon system, (c) modular system 
interfaces that define the shared boundary between those components and 
CSCIs, and (d) verification/validation data that demonstrates the 
contractor developed and produced the weapon system consistent with 
OSA requirements included in the contract. As described in Attachment 
1, these document-based processes should shift to model-based and 
automated processes as we mature this digital transformation.  Programs 
leveraging model-based approaches should implement style guides to 
ensure commonality across system development efforts.  

1.4. As the Air Force and Space Force continue to develop a “top-down” digital 
architecture and programs build the “bottom-up” architecture, a more integrated and 
interoperable Joint Force will emerge. On occasion, architecture-level requirements 
will be derived from strategic level decisions. When that occurs, the PEO C3BM 
(Command, Control Communications and Battle Management) Office, AF Futures, 
and other HQ organizations will translate the senior guidance into architecture-level 
technical requirements. Therefore, program managers – in coordination with the PEO 
C3BM Office, headquarters Service staffs, and the relevant Major or Field Command 
may need to adjust Acquisition Program Baselines (APBs) in accordance with 
strategic level-derived architecture requirements. 



3  

 

2. Leverage Open Standards 

2.1. In order to leverage the pace, scale, investment, and capability of the commercial 
innovation base, programs should adopt commercial technology and leverage 
commercial open (non-proprietary) standards to the maximum extent practicable. For 
example: 

2.1.1. Commercial networking is based on a set of layered technologies, where 
the packet-based Internet Protocol (IP) is the most widely used 
“convergence” technology at the Network layer, which rides on top of a 
Data Link layer, which itself rides on a Physical layer.  This enables rapid 
innovation at the lower layers and provides diversity in link technologies 
since packets can be routed over many different link technologies (e.g., 
Wi-Fi, fiber, cellular).  The emergence of 5G technologies is an example 
of this rapid innovation.  Therefore, when designing a network, programs 
should leverage IP and commercial network standards to the maximum 
extent possible. 

2.2. In general, and in accordance with DoD Instruction 4120.24, programs should 
leverage commercial and consensus-based standards whenever possible. When 
neither an applicable commercial nor government standard exists, programs should 
attempt to update existing standards and grow them to meet their needs. Only when 
programs have exhausted these options should they seek development of a new OSA 
standard in partnership with industry or the PEO C3BM Office, the DAF 
Standardization Executive (SAF/AQR), and SAF/SQ (in the case of Space related 
standards). For additional information on leveraging existing industry and 
government standards, see DoDI 4120.24, Defense Standardization Program (DSP), 
and AFI 60-101, Materiel Standardization. For additional information on updating 
existing government standards or creating new ones, see DoDM 4120.24. 

2.3. Where no reasonable commercial standard exists, programs should leverage 
Government owned and managed interface and open architecture standard to ensure 
interoperability and ease of system integration and modernization. Specifically: 

2.3.1. Open Mission Systems (OMS) is a non-proprietary open standard for 
integrating avionics subsystems and software services into mission 
packages. OMS promotes interoperability by allowing weapon systems, 
services, and subsystems to interact and communicate using common data 
formats. This interaction can occur within or between weapon systems; 
between platforms in sub-surface, surface, air, or space domains; or 
between ground segments. The OMS standard establishes a set of 
interface and compliance requirements that promote affordable 
technology refresh, capability evolution, and reuse. OMS is a consensus- 
based standard developed by an industry-led consortium in use since 
2012. Therefore, when designing subsystems and services, and in 
accordance with the SAF/AQ and AFMC/CC co-signed memorandum 
Use of Open mission Systems/Universal Command and Control Interface, 



4  

programs should adopt the OMS Open Architecture Standard in cases 
where a commercial standard is unavailable or a poor fit. 

2.3.2. Universal Command & Control (C2) Interface (UCI) is a messaging 
standard supporting machine-to-machine communication for mission-
level C2. UCI provides a common message definition for performing 
mission operations and enables C2 coordination across weapon systems 
and weapon system elements such as sensors, vehicles, data products, and 
software. Therefore, when designing a C2 system, and in accordance with 
the SAF/AQ and AFMC/CC co-signed memorandum Use of Open 
mission Systems/Universal Command and Control Interface, programs 
should adopt the UCI Open Architecture Standard in cases where a 
commercial standard is unavailable or a poor fit. For Space-based 
systems, given their unique nature, the coordination and concurrence of 
SAF/SQ must also be sought and obtained. 

2.3.3. Universal Armament Interface (UAI) is a non-proprietary open standard 
that fully defines the physical, logical, and mechanical interface between 
smart air to ground munitions and carriage systems and platforms that 
employ them. Therefore, when designing or integrating a smart air-to-
ground munition, and in accordance with the SAF/AQ signed 
memorandum Standardized Interface for USAF Air-to-Ground Weapons: 
Universal Armament Interface (UAI), programs should adopt the UAI 
standard in cases where a commercial standard is unavailable or a poor 
fit. 

2.3.4. Many other military unique Open Architecture and Open Standards exist, 
or are maturing, across the DAF, such as Resilient Embedded GPS/INS 
(R-EGI), Sensor Open Systems Architecture (SOSA), Big Iron, Common 
Open Architecture for Radar Programs (COARPS), and the AFLCMC/EB 
Weapon Government Reference Architecture. Therefore, as programs are 
beginning to define and build their system architectures, they should 
leverage these existing and emerging architecture standards to the 
maximum extent practicable. A more exhaustive list of current efforts, 
with appropriate POCs and application areas, and educational content on 
Government Reference Architectures can be found at: 
https://usaf.dps.mil/teams/afmcde/SitePages/Government-Reference- 
Architecture.aspx 

2.4. Interfaces and documentation often evolve over time based on emerging 
requirements, technology, and standards. In order to ensure interfaces and 
documentation are updated and maintained, maintain a list of key interfaces and 
document the standard used at these interfaces, including the justification for their 
selection.   

  



5  

3. Designate, empower, resource, and train System Architects in Program Offices 

3.1. Programs should identify staff responsibilities for managing open architecture 
implementation and may wish to designate a System Architect. 

3.2. To enable platforms and systems to work together as a family of systems (not simply 
systems), PEOs/TEOs should consider designating a Portfolio Architect responsible 
for guiding the implementation of Open Architecture across the PEO/TEO’s 
portfolio. 

3.3. Continuous learning is critical to ensuring our talent, whether civilian, military, or 
contractor, can keep up with innovation in technology to see where horizontal and 
portfolio gains can be made. DAU, AFIT, and the Open Architecture Management 
Office (OAMO), is continuously updating and augmenting training materials and 
accessibility. The following training material is recommended: 

3.3.1. Air Force Life Cycle Management Center, EZA-064, Introduction to 
Open Architectures. 

3.3.2. DoD Research and Engineering, Modular Open System Approach 
(MOSA) Reference Frameworks in Defense Acquisition Programs 
(https://ac.cto.mil/wp- content/uploads/2020/06/MOSA-Ref-Frame-
May2020.pdf). 

3.3.3. Defense Acquisition University, CLE019, Modular Open Systems 
Approach. 

3.3.4. Other training as defined by the DAF Chief Architect in coordination 
with the OAMO. 

3.3.5. Additional training and information will also be coming to the Air Force 
Digital Guide (https://usaf.dps.mil/teams/afmcde) and other DoD sites. 

4. Track and report architecture performance metrics 

4.1. To measure progress and track approaches that are working or require modification, 
programs and organizations should start collecting architecture metrics that can be 
assessed across teams with minimal disparity. The Portfolio Architects will develop a 
digital toolchain to minimize the burden of tracking metrics. The following metrics 
can be used to track implementation and maintenance of Open Systems Architecture: 

4.1.1. Does the program leverage commercial open standards, and if so, what is 
the standard(s) and for what interface(s)? 

4.1.2. Does the program leverage a Government Reference Architecture (GRA), 
and if so, is it being followed? 

4.1.3. Does the verification/validation data demonstrate the contractor 
developed and produced the weapon system consistent with OSA 
requirements included in the contract? 

4.2. Architecture-level metrics is a growing field with opportunity for improvement. 
PEO/TEOs are encouraged to recommend additional metrics. 



6  

No guidance can account for every situation our acquisition workforce will face. In general, programs can 
use the following litmus test to know whether they are taking the right approach to Open Systems 
Architecture to yield its transformative benefits: 

 

“Can one or more qualified third parties add, modify, replace, remove, or support a component or 
subsystem of this system; and can a separate system or platform integrate and share data with my system, 
based on open standards and published interfaces?” 

If the answer to this question is yes, the program is on the right path. 

 


